# Geometric Aspects and Auxiliary Features to Top-k Processing <br> [Advanced Seminar] 

Kyriakos Mouratidis
Singapore Management University

## Introduction

- Top-k query: shortlists top options from a set of alternatives

Weights could be captured by slide-bars:

- E.g. tripadvisor.com
- rate (and browse) hotels according to price, cleanliness, location, service, etc.
- A user's criteria: price, cleanliness and service, with different weights



## Introduction

- Slide-bar locations $\rightarrow$ numerical weights
- Linear function ranks hotels
- score $=0.8 \cdot$ price $+0.3 \cdot$ clean $+0.5 \cdot$ service
- Top-k returned (e.g. the top-10)
- We call $q=<0.8,0.3,0.5>$ the query vector - and its domain the query domain or query space
- We refer to alternatives (e.g. hotels) as records
- Top-k processing is well-studied
- E.g. [Fagin01,Tao07] for processing w/o \& w/ index
- Excellent survey [llyas08]


## Top-k as sweeping the data space

- Assume all query weights are positive
- ...and each record attribute is in range $[0,1]$
- Example for $\mathrm{d}=2$ (showing: data space)
- Sweeping line normal to vector $q$
- Sweeps from top-corner $(1,1)$ towards origin
- Order a rec. is met $\leftrightarrow$ order in ranking!
- E.g. top-2 = $\left\{r_{1}, r_{2}\right\}$
- At current position:
- $\forall$ rec. above (below) the line higher (lower) score than $\mathbf{r}_{\mathbf{2}}$



## Notes on dim/nality of query domain

- Ranking of recs. depends only on orientation of sweeping line (or hyper-plane, in higher dim.)
- query vector <0.8,0.3,0.5> same effect as <8,3,5>
- $\Rightarrow$ we can normalize q so that sum of weights is

1 (without affecting at all the top-k semantics)

- e.g. in 2-D we can rewrite scoring function as $S(r)=\boldsymbol{\alpha} \cdot x_{1}+(1-\alpha) \cdot x_{2}$
- This reduces dim/nality of query domain by 1
- Geom. operations in query domain become faster
- We'll ignore this in the following for simplicity


## Half-space range reporting

- Half-space range (HSR) reporting: preprocess a set of points s.t. all points that lie above a query hyperplane can be reported quickly
- Equiv: given query vector q and focal rec. p, report all recs. that score higher
- HSR counting: report just no. of points
- Equiv: given q and p, report the rank of $p$



## Relationship to Convex Hull

- Convex Hull: The smallest convex polytope that includes a set of points (records)
- Fact: The top-1 record for any query vector is on the hull!
- [Dantzig63]: LP text



## [Chang00]: Onion Technique

- Onion: Materialization to speed up top-k search
- $1^{\text {st }}$ layer $=\mathrm{CH}$
- contains top-1 rec. $\forall \mathbf{q}$
- $2^{\text {nd }}$ layer $=\mathrm{CH}$ of recs. except $1^{\text {st }}$ layer
$-1^{\text {st }}$ and $2^{\text {nd }}$ layer contain top-2 recs. $\forall \mathbf{q}$
- $3^{\text {nd }}$ layer $=\mathrm{CH}$ of recs. except $1^{\text {st }}$ and $2^{\text {nd }}$ layer...
- Top-k records for any q are among $k$ top layers!



## [Börzsönyi01, Papadias03]: Skyline

- Dominance: rec. $\mathbf{r}_{1}$ dominates $r_{2}$ iff it has higher values in all dimensions [ignore ties]
- $\Rightarrow \mathrm{S}\left(\mathrm{r}_{1}\right)>\mathrm{S}\left(\mathrm{r}_{2}\right) \forall \mathrm{q}$
- Skyline: all recs. that aren't dominated
- Includes top-1 $\forall \mathbf{q}$
- k-skyband: all recs. not dominated by $k$ or more others
- Includes top-k $\forall \mathbf{q}$



## [Das07]: Duality, 2D

- Overview: dual transformation used to process ad-hoc top-k queries on a dynamic buffer (e.g. sliding window)
- Insertions and deletions made to the buffer
- One-off (snapshot) top-k queries posed
- Objective: to maintain a subset of records in buffer, guaranteed to include the top-k result of any ad-hoc query


## [Das07]: Duality, 2D

- Dual transformation: Points mapped to lines
- rec. $\left(x_{1}, x_{2}\right)$ mapped to line $\boldsymbol{y}=\left(1-x_{2}\right) \mathbf{x}+\left(1-x_{1}\right)$
- Observe: all lines have positive slope

$$
\left\{\begin{array}{llll}
x_{2} & & & \\
\\
& & & \\
& \bullet r_{2} & & \\
r_{1} & & & \\
& & \bullet r_{3} & \\
& & & \\
& & & x_{1} \\
\hline
\end{array}\right.
$$



## [Das07]: Duality, 2D

- Dual transformation: Queries to vertical rays
$-\mathrm{q}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ mapped to ray from point $\left(\mathrm{w}_{2} / \mathrm{w}_{1}, 0\right)$


Order ray $\mathbf{q}^{*}$ hits line $\mathbf{r}^{*} \Leftrightarrow$ Rank of $r$ in the result of $q$
l.e. top-2 result $=\left\{r_{3}, r_{2}\right\}$

## [Das07]: Duality, 2D

- Idea 1: Maintain arrangement of lines induced by all records in the buffer
- Issue: arrangement costly to compute/update!
- Arrangement computation in 2-D: O(n²)
- Idea 2: keep only lines that could appear among the k lowest lines in the arrangement


## [Das07]: Duality, 2D

- Consider 2 queries, and their top-k points
- They define two pruning lines


Their intersection $=$ pruning point i

If a line $r^{*}$ is above $\mathbf{i}$ then $r$ cannot be in the result of any query between $\mathrm{q}_{1}$ and $\mathrm{q}_{2}$

## [Das07]: Duality, 2D

- Use border queries (like $\mathrm{q}_{1}, \mathrm{q}_{2}$ ) to partition the arrangement into strips
- Maintain top-k points of border queries and a pruning point in each strip
- In each strip, maintain a local arrangement, excluding lines above the pruning point
- Ad-hoc query posed: identify its strip, look for $k$ first lines its ray hits in the local arrangement



## [Yu12]: Duality, higher-D

- Overview: dual transformation used to process continuous top-k queries on a dynamic buffer (e.g. sliding window)
- Insertions and deletions made to the buffer
- Continuous top-k queries posed
- Objective: refresh the top-k results as fast as possible


## [Yu12]: Duality, higher-D

- k-level: set of edges (facets) in the arrangement $w /$ exactly $k$-1 others below them
- k-level captures the k-th result of any query!



## [Yu12]: Duality, higher-D

- Consider record $r$ insertion (deletion is similar)
- Affected queries = those under new edges in k-level




## [Yu12]: Duality, higher-D

- For areas of dual space (e.g. ranges on x-axis in 2D) that are dense with queries, it pays off to maintain the k-level...
- For the other areas, a non-geometric solution is best
- $\Rightarrow$ Hybrid approach, based on partitioning of dual space \& query density kept per partition to decide which approach to take


## [Yu12]: Duality, higher-D

- A by-product: preprocessing method for (bichromatic) reverse top-k queries (RTOP-k)
- Given a focal record p, a set of records, and a set of top-k queries, find the queries that have $\mathbf{p}$ in the result
- Prep: Find top-k points of all queries, i.e., intersections of query rays and the k-level
- Index these points
- Posed a RTOP-k query for p, report those queries whose top-k point is above $\mathbf{p}^{*}$
- Ex: RTOP-k includes only $\mathrm{q}_{2}$



## [Yu12]: Duality, higher-D

- Approximate top-k: idea of a coreset
- Process (either one-off or continuous) query on a selected subset of data records (coreset)
- Accelerates processing and
- Offers error guarantees


## [Soliman11]: Repr/tives \& measures

- Defines 4 problems:

1. MPO: Find the most probable top-k result (if query vector is randomly \& uniformly chosen)
2. ORA: Find the top-k result with minimum summed distance from all others
3. STB: Find maximum radius ard. $q$ where top-k result remains the same
4. LIK: Find probability that a randomly \& uniformly chosen query has same result as q
MPO\&ORA: Repr/tives; STB\&LIK: Sensitivity!

## [Soliman11]: Repr/tives \& measures

- MPO \& ORA key idea:
- For $r_{1}, r_{2}$ : equality $S\left(r_{1}\right)=S\left(r_{2}\right)$ maps into hyperplane in query domain!
- Every pair of records induces a hyperplane
- Producing an arrangement!



## [Soliman11]: Repr/tives \& measures

- Every cell corresponds to different full ordering $\wedge$ of the records!
- Possible orderings: $\mathrm{O}\left(\mathrm{n}^{2}(\mathrm{~d}-1)\right)$
- Top-k result $\leftrightarrow$ k-prefix of $\wedge$
- Enumerate, compute volume, report MPO
- Bottom-up or topdown processing



## [Soliman11]: Repr/tives \& measures

- Experiments for MPO only
- Solution for $\mathrm{d}=2,3$ is exact
- ...for d > 3, relies on sampling
- ORA solution utilizes specific characteristics of distance function (Kendall tau \& Footrule)
- ...and approximation/sampling (in the case of Kendall tau)


## [Soliman11]: Repr/tives \& measures

- STB: Given $\mathbf{q}$, find max. radius $\rho$ that vector $\mathbf{q}$ can move without changing top-k result:
- Order within result retained
- i.e. $S\left(r_{1}\right)>S\left(r_{2}\right)$ and $S\left(r_{2}\right)>S\left(r_{3}\right) \ldots S\left(r_{k-1}\right)>S\left(r_{k}\right)$
$-k-1$ conditions ( 0 -conditions)
- Non-results cannot overtake $r_{k}$
- i.e. $S\left(r_{k}\right)>S(r)$ for every non-result $r$
- n-k conditions (NR-conditions)
- Observation: each condition $\leftrightarrow$ a hyperplane!


## [Soliman11]: Repr/tives \& measures

- STB solution: Compute dist. from q to each of the $\mathrm{n}-1$ hyperplanes
- $\rho$ is the min. of these distances!
- Cost: O(nd)
- LIK: compute the cell including q (and then its volume)
- Cost: $\mathrm{O}\left(\mathrm{n}^{2^{\wedge}(d-2)}\right)$



## [Zhang14]: Global Immutable Region

- Global Immutable Region (GIR)
- The maximal region around query vector $q$ where the top- $k$ result remains the same


## [Zhang14]: Global Immutable Region

- Hotels with attributes location, service

| Option | Location | Service |
| :---: | :---: | :---: |
| 1 | 0.8 | 0.9 |
| 2 | 0.2 | 0.7 |
| 3 | 0.9 | 0.4 |
| 4 | 0.7 | 0.2 |
| 5 | 0.4 | 0.3 |
| 6 | 0.5 | 0.5 |

- Query weights in $[0,1]$
- For $\boldsymbol{q}=<0.5,0.5>$ top-3 result is:
$p_{1}, p_{3}, p_{6}$
- Which other possible queries would have the same top-3?


## [Zhang14]: Global Immutable Region

- Answer:

Every query vector in shaded area (GIR)

- Applications:
- Sensitivity analysis
- E.g. volume of GIR equals to probability that a random query vector returns same result as $q$
- Result caching
- Weight readjustment

Observe difference from STB


## [Zhang14]: Global Immutable Region

- Basic Alg.: There are k-1 O-cond/s (e.g. $\left.S\left(r_{1}\right)>S\left(r_{2}\right)\right)$
- ...and n-k NR-cond/s $\left(S\left(r_{k}\right)>S(r) \forall\right.$ non-result $\left.r\right)$
- Each condition $\leftrightarrow$ a half-space!
- Intersect all half-spaces
- Cost: O(nd/2)
- Problem: Too expensive
- Idea: limit no. of NR-conditions!
- ...i.e. prune non-results!



## [Zhang14]: Global Immutable Region

- Ideas to prune NRs
- Skyline pruning:
- Assuming k=2... and result $\left\{r_{1}, r_{2}\right\}$
- NR-conditions only for skyline records!
-7 NRs: $r_{3}$ to $r_{9}$



## [Zhang14]: Global Immutable Region

- Convex Hull pruning:
- NR-conditions only for records on CH !
- Actually, compute skyline first, and then CH on them
-5 NRs: $r_{3}, r_{4}, r_{6}, r_{8}, r_{9}$
- Still too many NRs!



## [Zhang14]: Global Immutable Region

- Observation: pin sweeping line at $r_{k}$ and consider all orientations that keep NRs below it!
- Tilting bound only
$\mathbf{r}_{4}$ and $\mathbf{r}_{8}$
- NR conditions only for $\mathrm{r}_{4}$ and $\mathrm{r}_{8}$ !
- Formalize??



## [Zhang14]: Global Immutable Region

- Facet pruning:
- Consider CH of $\mathrm{r}_{\mathrm{k}}$ and NRs
- Only CH facets adjacent to $r_{k}$ affect the GIR!
- Consider only NRs on adj. facets
- Optimization:

ONLY compute adj. facets (not entire CH)


## [Zhang14]: Global Immutable Region

- The same applies to any dimension!
- E.g. for d = 3



## [Mouratidis15]: MaxRank

- MaxRank query: given a focal record $\boldsymbol{p}$, find:

1. The highest rank p may achieve under any possible user preference, and
2. All the regions in the query vector's domain where that rank is attained

## [Mouratidis15]: MaxRank

- Hotels with attributes location, service

| Option | Location | Service |
| :---: | :---: | :---: |
| 1 | 0.8 | 0.9 |
| 2 | 0.2 | 0.7 |
| 3 | 0.9 | 0.4 |
| 4 | 0.7 | 0.2 |
| 5 | 0.4 | 0.3 |
| $\boldsymbol{p}$ (focal $)$ | 0.5 | 0.5 |

- Query weights in $[0,1]$
- If $\boldsymbol{q}=<0.7,0.3>$ order of $p$ is 4
- If $\boldsymbol{q}=<0.1,0.9>$ order of $\boldsymbol{p}$ is $\mathbf{3}$


## [Mouratidis15]: MaxRank

- Query domain
- Order of $p$
- MaxRank result:
- Min. order $k^{*}=3$
- MaxRank regions: shaded wedges
- Applications:
- Market impact analysis

- Customer profiling
- Targeted advertising


## [Mouratidis15]: MaxRank

- Dominees
- ignore
- Dominators
- simply increment $k^{*}$
- Incomparable
- How to deal with them?


Data Space

## [Mouratidis15]: MaxRank

- Consider a single incomparable rec. $r$
- Score of $r$ higher than $p$ iff query vector is inside a half-space
- Inequality $S(r)>S(p)$ maps into half-space in query space


Query Space

## [Mouratidis15]: MaxRank

- Idea: map each incomp. record to a h/s
- Recs. $\boldsymbol{r}_{1}$ to $\boldsymbol{r}_{7}$ map to $\uparrow \mathbf{w}_{\mathbf{2}}$ $\mathrm{h} / \mathrm{s} \boldsymbol{h}_{1}$ to $\boldsymbol{h}_{7}$
- Consider a cell
- set of h/s including cell = set of recs. scoring higher than $p$
- At cell of $q$ :
$\boldsymbol{h}_{1}$ and $\boldsymbol{h}_{2}$ include it $\Leftrightarrow$
$r_{1}$ and $r_{2}$ score higher Half-space Arrangement


## [Mouratidis15]: MaxRank

- Count in each cell $=$ no. of $\mathrm{h} / \mathrm{s}$ that include it
- Find the cell(s) with smallest count
- These cell(s) = MaxRank regions
$-k^{*}=$ their count + no. of dominators + 1
- Trouble:

Arrangement comp. takes $O\left(n^{d}\right)!!!$


## [Mouratidis15]: MaxRank

- Basic Approach (BA):
- Organize h/s with an augm. Quad-tree
- Leaves = partitioning of (query) space
- Only process leaves in fewest h/s (pruning possible)
- Within-leaf processing:
- It's still a "mini" arrangement problem
- $O\left(n^{d}\right)$ can still be avoided - details omitted
- Scalability: incomp. records far too many!


## [Mouratidis15]: MaxRank

- Idea: Consider incomp. records (and insert their h/s into Quad-tree) progressively \& only when they could affect the result
- Key Observation:

If $\boldsymbol{r}$ dominates $\boldsymbol{r}^{\prime}$, the $\mathrm{h} / \mathrm{s}$ of $\boldsymbol{r}$ includes that of $\boldsymbol{r}^{\boldsymbol{\prime}}$

- $\Rightarrow$ If the $\mathrm{h} / \mathrm{s}$ of $\boldsymbol{r}$ does not include any MaxRank region, $\boldsymbol{r}$ ' cannot affect the MaxRank result
- We may subsume the $\mathrm{h} / \mathrm{s}$ of $\boldsymbol{r}$ ' under that of $\boldsymbol{r}$


## [Mouratidis15]: MaxRank

- Assume $\boldsymbol{r}_{1}$ dominates $\boldsymbol{r}_{4}$ and $\boldsymbol{r}_{5}$
- Subsume $\boldsymbol{h}_{\mathbf{4}}$ and $\boldsymbol{h}_{5}$ under $\boldsymbol{h}_{\boldsymbol{1}} \rightarrow$ augmented h/s



## [Mouratidis15]: MaxRank

- In our example
$-r_{1}$ dominates $\boldsymbol{r}_{4}$ and $\boldsymbol{r}_{5}$
$-\boldsymbol{r}_{3}$ dominates $\boldsymbol{r}_{6}$



## Mixed Arrangement



## [Mouratidis15]: MaxRank

- Count is now a lower bound of the actual count if subsumed $\mathrm{h} / \mathrm{s}$ were considered!
- $c_{1}$ not in any aug. h/s; but $c_{2}$ in $h_{3,6} \rightarrow$ expand it!




## [Mouratidis15]: MaxRank

- Note on Advanced Approach (AA):
- Subsumption is implicit and decided dynamically


## [He14]: "Why-not" query

- Given a query q and its top-k result
- How should we modify vector $\mathbf{q}$ and/or value $k$ so that a record $\mathbf{p}$ is included in the result
- Defines a penalty function combining:
(i) perturbation on $\mathbf{q}$ (Euclidean dist.) and
(ii) increase in $k$
- Technique relies on sampling \& thresholding $\Rightarrow$ approximate answer
- There is an interesting geometric observation...


## [He14]: "Why-not" query

- $\forall$ incomp. rec. $\mathbf{r}$ defines a hyper-plane w/ eqn. $\mathrm{S}(\mathrm{p})=\mathrm{S}(\mathrm{r}) \rightarrow$ Arrangement similar to MaxRank
- The optimal answer to the why-not query is proven to lie on the boundary of some cell!



## [Vlachou10]: Reverse top-k query

- Bichromatic: Given a focal record p, a set of records, and a set of top-k queries, identify the queries that have $\mathbf{p}$ in their result
- Algebraic bounds based on MBRs $\leftrightarrow$ no comp. geom.
- Monochromatic:

Given a focal record $p$ and a set of records, find all regions in the query domain where $p$ is in the top-k result

- Solution for 2-D only


## [Vlachou10]: Reverse top-k query

- Monochromatic RTOP-k in 2-D
- $S(r)=\boldsymbol{\alpha} \cdot x_{1}+(1-\alpha) \cdot x_{2}$
- Every intersection of scoreline of $p \leftrightarrow$ reordering
- Plane sweep algo.



## Top-k in High-D?

- Unless the data exhibit strong correlation, top-k is meaningless in more than 5-6 dimensions!
- As d grows, the highest score across the dataset approaches the lowest score!
- I.e. ranking by score no longer offers distinguishability $\leftrightarrow$ looses its usefulness
- Behaviour very similar to nearest neighbor query, known to suffer from the dimensionality curse [Beyer99]


## Top-k in High-D?

- IND data
- ...of fixed cardinality $\mathrm{n}=100 \mathrm{~K}$
- ...we vary data dimensionality




## Thank you!

